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SYMBOLS 

BASIC QUANTITIES AND COEFFICIENTS 

A 	 The dimensionless coefficient indicating the factor by 
which (6p/p) is multiplied to  yield (6T/T) 

G 	 The standard geopotential gravitational constant 
9.80665 m2s - ~(m')-' 

H Scale height in units of geopotential height, m' (or km') 

h 	 Geopotential height in units of m' (nearly equal t o  geo­
metric height, but accounting for height variation of.the 
acceleration of gravity; that is, Gdh = g(z)dz) 

k 	 A dimensional constant 0.0341 632 K/m' resulting from 
the combining of the three constants GM/R into a single 
value 

M Mean molecular weight of air 28.9644 kg kmol-' 

P Atmospheric pressure N m-' 

R Universal gas constant 8.3 1432 X lo3 joules K-' kmol-' 

R Ratio of Sq," to Sq,min 

S 	 The value of a particular series of terms involving 
density ratios 

T Atmospheric temperature K 

A general designation for a function of a number of 
generalized variables 

A general designation for the set of variables of which 
x is a function 

A subscripted dimensionless coefficient with a value 
near unity 

Atmospheric density kg m-3 

EQUATION OR 

FIGURE 


... 
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SINGLE SUBSCRIPTS 

1 	 Refers to a particular height h, so that p1 ,T, ,p ,  ,and h, 
in a single equation all refer to conditions at  the same height 

2 Similar to  1 

i 	 Refers to  an individual member of a set of related 
variables having the general designation yi 

i 	 Also refers to a variable in an isothermal atmosphere as pi in 
the graph of ( p i / p r )versus h in figure 1 

j 	 A general designation for an integer which may vary be­
tween 2 and q ,  and which is simultaneously associated with 
a geopotential height as hj and with the related density as pj 

9 	 A general designation for an integer which may have any 
positive value, and which is associated with the lowest 
density-height data point (that is, hq ,p , )  involved in 
a particular evaluation of an integral to determine the 
value of the related temperature Tq 

9 	 Also used as S ,  where q implies the number of terms 
in the series S 

r 	 Designates a specific reference value for the basic 
quantity of which it is a subscript, that is, p, and p, 

DOUBLE SUBSCRIPTS 

172 	 Refers to a particular height layer as between h, and h, , 
where h,  and h, are ordered in such a way that the 
quantities within the subscripted parentheses have par­
ticular signed significance; that is, Ah is always positive 
while AH is positive only when dT/dh is positive in the 
related layer 

j-1, j Similar to 1, 2 

Lj+1 Similar to 1, 2 

q-1 ,q Similar to 1, 2 

EQUATION OR 
FIGURE 

(4) 

(4) 
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EQUATION OR 

FIGURE 


q, max Designates maximum value of Sq Figure 6 

q, min Designates minimum value of Sq (36) 

OPERATORS AND FUNCTIONS 

-

d-

I 

a 

d 

Qn 

A 

6 

c 

Overbar as in T or Hindicates the mean value of T or H 
for the related layer 

Square root as JT 

Integral as Ip(h) dh  

Partial differential as in a x  

Differential as in dh 

Natural logarithm as Ilnp and Qnp 

An increment as in Ah and AH 

An increment or random uncertainty as in 6yi, 6 p l ,  
6Ah, 6Tl ,  6pj, 6Tq,and 6 p q  

A summation of a set of terms 
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A N  ANALYSIS OF THE E R R O R S  ASSOCIATED W I T H  


THE D E T E R M I N A T I O N  OF ATMOSPHERIC 


TEMPERATURE FROM ATMOSPHERIC 


PRESSURE A N D  DENSITY D A T A  


R.A. Minzner 

Goddard Space Flight Center 


INTRODUCTION 

Relationships between pressure, temperature, and height in the earth’s atmosphere are well 
known and for many years have been the basis for height determination in balloon-
radiosonde flights in which pressure and temperature were measured during meteorological 
probings of the lowest 30 km of the earth’s atmosphere. When rocket vehicles extended 
the potential atmospheric probing capabilities to heights up to 100 km, into regions where 
pressure is still measurable, but where existing technology does not allow for immersion sen­
sing of temperature, these same mathematical relationships were used to extract temperature, 
from the measured pressures and radarderived rocket-height data. The unsmoothed temper­
ature-height values from many of these soundings represented a very jagged height profile, 
with the degree of jaggedness apparently increasing as the height increment between suc­
cessive data points decreased. Investigators usually have been unable to determine how 
much of this jaggedness represents real temperature variability and how much is attributable 
to measurement error. 

The hydrostatic equation and the equation of state lead to another set of height relation­
ships: those between atmospheric density, temperature, and height, such that temperature 
can also be computed from density-height data. In cases where such computations have 
been made, particularly in the height region of 30 to  100 km, the resulting temperature-
height profiles appeared to be less jagged than those derived from pressure-height data 
with comparable height resolution. 

The apparent difference in the jaggedness of density-derived temperature-height profiles 
from those associated with pressure-height data suggest that the height increments of the 
pressure and density data do affect the uncertainty in the derived temperatures, and that 
the influence of height increments in relation to density data may be different from that 



in relation to pressure data. Obviously, error analyses, which involve both the pressure­
temperature-height relationship in one instance and the density-temperature-height relation­
ship in another instance, are needed. The error analyses presented in this paper confirm the 
fact that important differences do exist between these two sets of relationships, particularly 
in regard to the influence of the height increment on the propagation of measurement un­
certainties into the temperature-height profile. These differences strongly favor the use of 
density-height data over pressure-height data. 

FUNDAMENTAL CONSlDERATfONS 

Pressure-Height Relationships 

The equation of state, when combined with the differential form of the hydrostatic equation 
to eliminate density p ,  yields an expression frequently referred to  as the hypsometric 
equation: 

dQnp - -GM - -1 
dh RT H 

where 
p = atmospheric pressure, 

h = a measure of the height above sea level, in geopotential meters m’ 

T = absolute temperature of the atmosphere at h ,  

R = the universal gas constant, 

M = the mean molecular weight of air, 

G = a constant when h is expressed in geopotential, and 

H = the scale height in geopotential units. 

Solving equation (1) for T and H, respectively, yields 

T = - . -GM -dh 
R dQnp 

and 

RT -dhH = - = -
GM dQnp 

(3) 

When values of Qnpversus h are known from numerical data rather than from an analytical 
function, it is convenient to replace the expression -dh/dQnp, which applies to a specific 
height, with a numerical approximation (h, - h, )/(Qnp, -Qnp,). In this approximation, 
p, is the pressure at h, ,and p, is the pressure at h, . The approximation therefore represents 
the mean value of the reciprocal of the derivative over the height interval (h, -h, ). When 

2 




the point value of the derivative in both equations (2) and (3) is replaced by the numerical 
approximation, the related values of T and H no longer apply to a single height, but 
rather become the mean values T and fi, respectively, associated with the height interval 
(h, - h, ). Thus, we have 

where k = GM/R = 0.0341632 K/m’, and = h, - h, ,and where, from the relation­
ship between T and H implicit in equation ( l ) ,  we see that 

H =  h2 -h1 -- (Ah),,2  (5)
Qnpl -Qnp2 Qnpl -Qnp2 

From equation (S), we obtain the following expression which will be of special importance 
in the section on Uncertainty of Temperatures Deduced from Pressures: 

The interrelationships between Qnp,dQnp/dh,T, and H, all as a function of height as ex­
pressed by equations ( l ) ,  (2), and (3), are shown pictorially by four of the six height-related 
graphs of figure 1. This figure, which depicts the properties of a portion of the US. 
Standard Atmosphere, 1975 * was developed from a preliminary set of abbreviated tables 
representing a portion of this revised standard atmosphere (Kantor and Cole, 1973). Geo­
potential height is scaled linearly along the abscissa of figure 1. Atmospheric pressure, 
which is plotted in the form of the natural logarithm of the ratio (p/pr), has its ordinate 
scale at the left of the figure and is depicted by the lower of the three lines diagonally 
crossing the entire figure from upper left to lower right. In this presentation of pressure, 
p, in the ratio (p/pr) has been made equal to one newton per square meter (1 N m-,) so 
that the numerical values of (p/pr) are those of p in N mm2,while the scale of Qn(p/p,)at 
the left of the figure implies no dimensions. 

The graph of dQnp/dhshows that the slope of Qn(p/pr)versus h, or equivalently the slope 
of Qnpversus h, is constant only in height regions over which T is invariant. (The value of 
dQnp/dhis negative and inversely proportional to T.) These portions of the graph of 
dQnp/dhversus height corresponding to constant T (the three height intervals 11 to 20 km’, 
47 to  57 km’, and 84.852 to 89.7 16 km‘) consist of horizontal straight-line segments, while 
the remainder of that graph consists of 5 curved segments. The scale height, which is direct­
ly proportional to  T, is seen to remain within the range of 5.45 and 7.95 km’, with a median 
value of 6.5 km’. 

*US.Standard Atmosphere, 1975, Committee for the Extension ofthe Standard Atmosphere, GPO, in preparation. 
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Figure 1. The U.S. standard atmosphere as represented by graphs of five atmospheric properties versus 
height: that is, temperature, scale height, natural log of density ratio, natural log of pressure ratio, and 
derivative of natural log of pressure ratio with respect to height, plus a sixth property for comparison-
natural log of density ratio versus height for an isothermal atmosphere. 
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Density-Height Relationship 1 

When the differential form of the hydrostatic equation is combined with the differential 
form of the equation of state t o  eliminate the differential of pressure, we obtain the follow­
ing relationship between temperature and the density-height function: 

T = - -dh GM dT1 (7)- + ­
dQnp [R dh] 

In the absence of an analytical expression for p(h), a numerical approximation for dh/dQnp 
leads to a mean value of temperature T for the height interval h, - h, : 

In terms of scale height, this expression becomes 

It is important t o  note that while equation (8) expresses the mean temperature for the layer 
h, to h, ,the expression involves the average gradient of T with respect t o  h within that 
layer. A similar situation prevails for the expression of the mean scale height in equation 
(9) where E = (H, + H, )/2. Since prior knowledge of the value of neither (T, -T, )/(h, -h, ) 
nor (H, - H, )/(h2 - h, ) is generally available, equations (8) and (9) are not of themselves 
useful relationships for temperature-height determination. However, one version of the 
following expression derived from equation (9) will be of special importance in an uncertainty 
analysis in the section on Uncertainty of Temperatures Deduced from Densities. This 
expression is 

Equation (10) is written for the case in which h, > h, ,as when data are being analyzed from 
lower to greater heights, such that p,  >pp .  If the equation is t o  apply to  data being analyzed 
from greater to lower heights, as is the preferred case for the integral form of the density-
height function involving the normal atmosphere, h, is greater than h, such that p, >p, ,and 
equation (10) must be rewritten as 

-
H1 - (H1 + H,)/2 =(Ah+*H) , ,  (1Oa)

Qnp2 - QnPl (hl -h2)  +(Hl  -H2> 

In this expression Ah is always positive, and AH is positive in regions of positive temperature 
gradients, zero in regions of zero temperature gradients, and negative in regions of negative 
temperature gradients. 
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Density-Height Relationship2 

The integral of the hydrostatic equation, when combined with the equation of state t o  elim­
inate the pressure, yields the following directly useful integral expression relating tempera­
ture to  density: 

GM 1 
T

4 
= -p1 0 T, - Ihqp(h) dh 

pq '4 h,  

The temperature T, is not the mean value of temperature for some layer, as in the case of-
T in equation (4), rather, it is the temperature at the specific height h,. 

It has been demonstrated (Minzner et al., 1964 and 1966) that, when applied to  a helium 
atmosphere, the properties of equation (1 1 )  differ markedly from those observed when the 
equation is applied t o  an argon atmosphere. With an air atmosphere having a mean molecular 
weight of about 29, the properties of this equation are similar to those found when the 
equation is applied t o  an argon atmosphere in which the integration optimumly proceeds 
from the greatest to the lowest altitude of the density-height data. In this situation, T, , 
p, ,and h, are each associated with the greatest height of the data set, while Tq,p, ,and hq 
are each associated with the running value of h. This is the height for which the value of 
T, is being computed, a height which varies progressively from h, t o  the lowest height of 
the data set as the calculation of the profile proceeds. 

Because p(h) is usually known numerically rather than analytically, it is convenient t o  re­
place the integral of equation (1 1) with an appropriate series approximation, one of which 
is governed by the logarithmic trapezoidal rule (Minzner et al., 1965). With the use of this 
approximation, equation ( 1  1) may be rewritten as 

The logarithmic-trapezoidal rule is a particularly suitable one for the integration of atmos­
pheric density with respect t o  height because this approximation very closely represents the 
conditions of the real atmosphere, and because, in a graph of measured values of Qnpversus 
h, the straight-line segments between successive data points exactly represent the conditions 
of the logarithmic trapezoidal rule. The agreement of this rule with reality is evident from 
the nearly straight-line segments of an idealized version of the real atmosphere shown in the 
graph of Qn(p/p,) versus height in figure 1 .  For this graph, which represents the densities of 
the U.S. Standard Atmosphere, 1975, the value of p, was chosen to  be 1 X IO-' kg m-3, so 
that the single ordinate scale at the left of the figure applies to  both Qn(p/p,) and Qn(p/p,). 
The shape of the curve Qn(p/pr)versus h is identical to the shape which the curve Rnp versus 
h would have, because the values of Qn(p/p,) versus h and of Qnpversus h are offset by the 

constant difference Qnprat  all heights. 
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Figure 1 also contains a graph of Qn(pi/pr)in the form of a continuous straight line immed­
iately above the graph of Qn(p/p,). This single straight line diagonally across the entire figure 
is characteristic of the density of an isothermal atmosphere extending upward from a height 
of 11 km’ where the standard-atmosphere density is 5.4721 X kg m-3, and where 
the temperature and the corresponding scale height are 216.650 K and 6.363 k”,respectively. 
For this specialized atmosphere, the logarithmic-trapezoidal rule represents a series which 
exactly duplicates the integral of equation (1 1). The small deviations of the slopes of Qn(p/p,) 
versus height from those of Qn(pi/p,)versus height show the small influence of the variation 
of atmospheric temperature from the fixed value 216.650 K (in the height region of 10 to  
90 km’) on the general shape of the curves of Qn(p/p,) and Qnpversus h. (The influence of 
temperature-height variation upon the curves of Qn(p/p,) and Qnpversus h is similarly small.) 

In the evaluation of T, by equation (1 l ) ,  or by any appropriate approximation of that 
equation as exemplified by equation (1 2), a knowledge of the initial temperature T, is of 
importance only for the upper regions of the profile. For h, = h, ,the value of ( p ,  / p q )  T, 
is exactly T, because the integral term is zero and p ,  = p,.  As h, decreases from h, (that 
is, as the value of (h, - hq)  increases), the value of the relative contribution of the density-
ratio term decreases, while that of the integral term correspondingly builds up. When 
(h, - h,) increases from zero, first by one scale height and then by three scale heights, the 
relative contribution of the density-ratio term to T, decreases from 100 to about 37 percent, 
and then to about 3 percent, because of the large decrease in the value of ( p ,  / p q )  over these 
height regions. Simultaneously, the value of the integral term grows corrzspondingly. At 
heights of more than three scale heights below h, , the value of Tq is determined almost 
completely by the integral term alone. Figure 2 shows the relative contributions made to 
Tq by the density-ratio term and by the integral term of equation ( 1  1) as a function of the 
range of the limits of integration (hl - h q )  expressed in units of scale height. 

The graphs in figure 2 are based on the density-height profile for an isothermal atmosphere 
(T = 216.650 K) for which Qnpis a linear function of height as previously shown in the graph 
of Qn(pi/pr)in figure 1. Only small variations from the values of the two terms of equation 
(12) depicted in figure 2 would be seen for calculations based on a real, variable-temperature 
atmosphere. 

The elimination of T between equation (12) and equation (3) yields the following expres­
sion for scale height: 

The relative contribution of each of the two terms of this equation to H, ,as a function of 
the range of integration (h, - h,), follows exactly the same pattern shown in figure 2 with 
regard to T,. 
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Figure 2. Relat ive contribution made to the calculated temperature by the density-ratio term and by the 
integral term of equation (11) as a function of the size of the altitude range of integration, for a 217 K 
isothermal atmosphere. 

Atmospheric soundings of both pressure and density have for many years served as the basis 
for the determination of the height profiles of temperature and scale height. These profiles 
for temperature and scale height are obtained from pressures through equations (4) and ( 5 ) ,  
respectively, while from densities they are obtained through one or another version of 
equations (1 2) and (1 3), respectively. It is obvious that the uncertainties of these derived 
temperatures and scale heights are a function of the uncertainty in the measured quantities 
of pressure or density. Somewhat less obvious is the fact that the height interval between 
successive observations of pressure or density strongly influences the propagation of the 
observational uncertainties into the computed temperatures and scale heights. A rigorous 
error analysis of these two pairs of equations demonstrates this situation. The pair of 
pressure-related equations are analyzed in the following section while the pair of density-
related equations are analyzed in the subsequent section. 

UNCERTAINTY OF TEMPERATURES DEDUCED FROM PRESSURES 

The error-analysis method employed is the first-order Gaussian method, wherein each 
variable yi entering into the expression of a particular function of these variables x(yi) is 
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assumed to  have an observational uncertainty 6yi which meets the conditions of a Gaussian 
or normal distribution about yi, where sii is the mean of a set of individual observations of the 
ith variable or the true value of the ith variable. Thus, if the value of x is determined from 
the functional expression x(yi), the value of 6x, the implicit uncertainty in x, is given by 

Applying this relationship to  the variables of equation (4), in which is redesignated 
simply as Ah, yields 

aAh6T = [(E 6p1)l
ap1 

+ ("
ap2 

6p2) l  + (E 6 ~ l h ) ~ ]' 
(15) 


It may be shown from ( 5 )  that the partial derivative of T with respect to  Ah, when simul­
taneously multiplied and divided by equivalent portions of ( 6 ) ,leads to  

Because the coefficient of 6Ah/E in (16) is identically the coefficient of -6p/pl and of 
-6p,/p2 when the partial differentiation processes indicated in ( 1  5 )  with respect to both 
p1 and p2 have been performed, it follows that 

kAh 
6T = 

(QnPl - QnP* l2 

where 6pl and 6p, are the pressure uncertainties of two consecutive pressure-height values, 

(17) 


and 6Ah is the uncertainty of the height interval Ah between the corresponding two pressure-
height values. 

Dividing each side of equation (17) by the appropriate side of equation (4) yields the rela­
tive uncertainty 

It is convenient to  assume that all the uncertainty of a pressure-height point is in the pressure 
and that the height increment is exact. In this case, the values of both 6p, and 6p2 are 
correspondingly increased over their actual values, and the term involving 6Ah in equation 
(18) vanishes. It is further assumed that the relative uncertainty in measured values of p is 
the same at h, and h, ;that is, 6pl /pl = 6p2/p2 = 6p/p. These two assumptions permit 
equation (18) to be reduced to  the simpler form, 
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From equation (6) it is apparent that 1/(Qnp, -Qnp,) in equation (19) may be replaced by 
[$(Ah), ,, I where is the mean scale height for the layer h, - h, = (Ah), ,a . Thus, 
equation (19) may be rewritten as 

This equation indicates that 6T/T, the relative uncertainty in the mean temperature of the 
layer bounded by pressures p, and p, ,is equal to the relative uncertainty in the pressure 
measurements times a coefficient 4, ,, . This coefficient is seen to depend upon only two 
quantities, the mean temperature T of the layer h, -h, (T being implicit in G )  and (l/Ah), 
the reciprocal of the thickness of the pressure-sampling interval (h, - h, ). Since the max­
imum value of T in the earth’s atmosphere below h = 100 km’ is less than twice its minimum 
value, and since Ah can, in principle, be made to vary over many orders of magnitude, it is 
apparent that Ah is the dominant factor in determining the propagation of (6p/p) into 
6T/T). 

A graph of the coefficient A, , 2  as a function of Ah for three specific values of T ,  169.10 K, 
241.57 K, and 3 14.04 K, is given in figure 3. The first and third of these temperatures were 
selected in part because they are close to the lowest and highest atmospheric temperatures 
normally observed at heights below 100 km, while the second is the mean of these extremes. 
In addition, these three values were specifically selected to correspond respectively to a 
particular set of three scale heights: ( 7 / f i ) ,  (lO/Jz>, and (13/fi) km’. In each of these 
three cases, the value uf A, ,a  is unity when Ah is a particular integer multiple of one geo­
potential kilometer, 7, 10, and 13 km‘, respectively. 

It is interesting to note that, for the entire range of normally observed temperatures at 
heights below about 100 km’, the pressure-sampling interval Ah corresponding to unity for 
the coefficient A, ,, varies between the limited range of 7 to  13  km’. The pressure-sampling 
height interval, however, may actually vary over several orders of magnitude depending upon 
the design of the measuring system. The value of the coefficient A, ,, could correspondingly 
vary over several orders of magnitude depending upon the choice of Ah. -
Concentrating on the median value of T, and allowing the pressure-sampling interval Ah to 
decrease first from 1O4 m‘ to 1O3 m’ and then to 10, m‘, causes the value of A, ,, to increase 
first from 1 to  10 and then to 100, respectively, such that the uncertainty in the value of T 
as expressed by equation (20) simultaneously increases by factors of 10 and 100 for a fixed 
uncertainty in the pressure. Conversely, as Ah is increased from lo4 m’ to lo5  m’, the value 
of A, ,, decreases from unity to 0.1, such that the uncertainty in a related mean value of T 
correspondingly decreases by a factor of 10. 
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Figure 3 shows that when mean temperatures are deduced for successive layers from pressure 
observations having a fixed uncertainty, finer height resolution in the resulting temperature-
height profile is obtained at the expense of temperature accuracy, while increased tempera­
ture accuracy is achieved at the expense of height resolution. Since the ultimate accuracy 
of pressures obtained from any high-altitude balloon-borne or rocket-borne pressure-sensing 
device is limited by considerations of various perturbing phenomena such as outgassing, 
boundary layer, and shock wave, the value of 6p/p has a practical lower bound. Thus, 
(6T/T) . (Ah/ f l*  E)which is equal to  6p/p similarly has a practical lower bound, and for 
this minimum value of 6p/p, 6T/T is governed by the value of the ratio (Ah/H). 

Figure 3 shows the effect of variations of both T and Ah on the value of the coefficient 
A, , 2  = (fl.H/Ah). By expressing Ah in multiples of one scale height, the number of 
variables in equation (20) is effectively reduced by one, and values of 6T/T can be plotted 
as a function of Ah = n . (where n is the value along the abscissa) for any particular value 
of 6p/p. Figure 4 presents such a graph for each of nine values of pressure uncertainty. 

In figure 4, the straight-line graph for 1 percent uncertainty in p intersects the coordinate-
for 1 percent uncertainty in T at the abscissa coordinate value of 1.414. This same straight-
line graph for 1 percent uncertainty in p intersects the ordinate values of 10, 100, and 1000 
percent at abscissa values of Ah equal to  0.1414, 0.0 1414, and 0.00 1414, respectively. 
This series of successively decreasing values of Ah, each being one tenth of the preceeding 
one, yields a geometric series of increasing values of 6T/T, each being ten times the pre­
ceeding one. A similar situation prevails for each of the eight other values of 6p/p, for which 
lines have been plotted. The value of 6T/T is obviously varied over orders of magnitude by 
comparable variations of the value of the ratio H/Ah. For height increments with a value 
o f a t i m e s  one scale height, however, the lines for each of the nine values of 6p/p plotted 
show the relative temperature uncertainties to  be equal t o  relative pressure uncertainties. 

In order to show simultaneously the small additional influence produced by the allowable 
range in the value of a as it appears both in 6T/T as well as intrinsically in H, the single-
line graph for each value of 6p/p in figure 4 is expanded into a band in figure 5 where the 
pressure-sampling height is expressed in meters as in figure 3. 

The lower left-hand edge of each band corresponds to T = 169.10 K, while the upper right 
hand edge of each band corresponds to  T = 314.04 K with other points across each band 
corresponding logarithmically to  intermediate temperatures. From figure 5 one may estimate 
the percent uncertainty in particular atmospheric temperatures computed from pressure-
height data measured with a specified uncertainty over particular height increments. 

Three sample applications of this graph are cited: In the first it is desired to  determine 
the maximum pressure-gage uncertainty allowable t o  achieve a 1 percent uncertainty in a 
mean temperature of about 240 K for a layer thickness of 100 m’. We look for the inter­
section of the 100 m’ abscissa value with the 1 percent ordinate value, and find that it lies 
near the 242 K value of the 0.01 percent pressure-uncertainty band. ‘Thus,pressures would 
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Figure 4. Percent uncertainty in the mean temperature of an atmospheric layer (for any one of nine 
uncertainties in the pressure-height data) as a function of the pressure-sampling height interval (the 
thickness of that layer) when that mean temperature is  deduced from the atmospheric pressure at  the upper 
and lower boundaries of that layer, and when the mean temperature i s  a t  or near 241.57 K. 
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Figure 5. Relat ive uncertainty in temperatures (calculated from pressure-height data) as a function of the 
pressure-height sampling interval, and as a function of the value of the temperature, for each of nine values 
of relative uncertainty in the pressure-heightobservations. 
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have to be measured with an uncertainty no greater than 0.01 percent to achieve the 
desired results. Since it is essentially impossible to achieve such a small uncertainty in 
any rocket or balloon measurements of pressure, this combination of height resolution and 
temperature uncertainty is essentially impossible t o  achieve from pressure-height data. 

In the second example, we assume a pressure-gage uncertainty of 3 percent and a mean 
temperature of 180 K, and we seek the temperature uncertainty associated with particular 
sampling-height increments. If the pressure sampling-height interval is 3 km, this ordinate 
value is seen to intersect the appropriate region of the band for 3 percent pressure un­
certainty at  a value corresponding to a temperature uncertainty on the ordinate scale of 
about 7.4 percent or  about 13.3 K. A doubling of the layer thickness to 6 km would 
halve the temperature uncertainty. 

The third example involves the inverse problem of estimating the uncertainty in the 
computed pressure differential associated with an assumed isothermal layer of fixed 
thickness. If the layer has a thickness of 3 km, as may be the situation in the grenade 
experiment (Nordberg and Smith, 1964), and if there is an uncertainty of about 2 per­
cent or 5 K in an assumed mean temperature of 250 K ,  the graph shows that the com­
bined uncertainty of the two boundary pressures lies between 0.3 and 1.0 percent or 
about 0.6 percent on a logarithmic scale. For a layer thickness of 1 km, the boundary-
pressure uncertainties would increase by a factor of 3. If the computed pressure-height 
profiles were used to generate density-height profiles, the uncertainties in the densities 
would be somewhat larger than in the pressures because of the required vector addition 
of the temperature uncertainty and the pressure uncertainty to  obtain the density 
uncertainty. 

UNCERTAINTY OF TEMPERATURES DEDUCED FROM DENSITIES 

Applying the first-order Gaussian method, equation (14), to the determination of the 
uncertainty in temperatures deduced from density-height data through equation (1 1) 
leads to 

provided that we assume all the uncertainty in a density-height point to be concentrated 
in the density. Because scale height combines the temperature with several constants, 
the use of scale height facilitates the expansion and analysis of equation (21). Consequent­
ly, it is convenient to  rewrite that equation as 
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Both equations (21) and (22) involve (q + 1 )  terms, where q is the number of densily­
height data points. The first term is associated with the uncertainty of the temperature 
or the scale height at h, ,while the second term is associated with the uncertainty of the 
density of h, . Each of the q-1 additional term deals with the uncertainty of one of the 
successive q-1 density-height data points, respectively. Three of the (q + 1) terms of the 
series have unique formats. These are the first, the second, and the last terms, those 
involving 6Tl (or 6Hl ), 6p, , and 6pq,  respectively. However, the remaining terms 
(the third through the qth term involving 6p, through 6pq-1, respectively), have a com­
mon format. Thus, the sum of these common-format terms may be expressed as the sum­
mation of a general term. Applying the operators indicated in equation (22), dividing 
both sides of the resulting equation by Hq, and introducing equation (loa) yields the 
following equation: 

where 

Equation (23) (developed in appendix A) is very much more complicated than the com­
parable uncertainty expression in terms of pressure-height data as represented by equation 
(18). The considerable difference in the complexity between the two equations stems 
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largely from the fact that equation (18) involves the uncertainty of only two pressure-
height data points and the uncertainty of the corresponding height increment, while 
equation (23) involves the uncertainty of all consecutive density-height data points from 
h, to h,, each of which contributes at least a small amount to the value and uncertainty 
of the temperature or scale height at height h,. It is emphasized that the quantities T, 
or H, in equations { 11) through (13), and again in equations (21) through (23), represent 
values for specific heights rather than mean values for specific layers as in the case of the 
pressure-related equations. 

Each element of equations (23) through (27) is associated either with a specific height 
or with a specific layer. Elements having a single subscript, for example, H I ,  p ,  ,p,,  p j - , ,  
p,+ ,,pq- , ,  p, ,  and H,, signify the value of the particular quantity at heights h, ,hj, hj- , ,  
hj+,, h,-, , and h, , respectively. Quantities with a double subscript, for example, 
a,, 2 ,  aj-,, j ,  and so forth, represent a quantity associated with particular layers, that is, 
the layers bounded by h, and h, ,or by h,-, and hj, and so on, respectively. Thus a,,,, 
as expressed by equation (24), represents an algebraic expression of four different quan­
tities, three of which, namely H, Ah, and AH, are associated with the layer h, t o  h,. 
In equation (24), E is the mean scale height for the layer Ah = h, - h,, while AH 
represents the change in scale height within that layer, that is, H, - H,, such that only 
in a region where the gradient of H or  T with respect t o  height is positive will AH be 
positive. The quantity Hq is, of course, the value of H at height hq .  Similarly, 

, j ,  
a..

J , J +  1 ’ and aq-l, q ,  as defined by equations (25), (26), and (27), respectively, each 
represents quantities associated with the particular appropriate layers. Equation (23) 
also includes the doubly subscripted quantities 

each of which represents one factor of the right-hand side of equations (24), (25), (26), and 
(27), respectively. The influence of nonzero gradients in the temperature-height profile 
is impressed upon 6Hq /Hq through all the doubly subscripted quantities in equation (23). 

In order t o  see more clearly the influence on 6Hq of sampling-height interval alone, it is 
convenient to  assume an isothermal atmosphere and to  correspondingly simplify equation 
(23). In this case, scale height would not vary but would remain fixed at a value H over 
the entire region of integration, and the following relationships would apply: H, = H, = 
H, E = H, and AH is zero in all layers. Under these conditions, equations (24), (25), 
(26), and (27) become unity, as does the ratio H, /Hq,  and equation (23) may be rewritten 
as 
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It can be shown that 

such that these two terms in the coefficient of ( 6 p q / p q )  in equation (28) cancel each 
other. Then, if we impose the additional condition that the height increments between 
successive density-height data points are constant over the entire region of integration, 
this condition plus equation (29) permit the further simplification of equation (28) to 

If we impose still another restriction, that is, that the relative uncertainty of the density 
data has the constant value 6 p / p  for all heights within the range of integration, we see 
that 6 p , / p ,  = 6pj/pj = 6 p q / p q  = 6 p / p .  Thus we may rewrite equation (30) as 

The restriction permitting this simplification, while somewhat unrealistic from the point 
of view of any measuring system, is acceptable because the relative uncertainty of only 
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p, enters significantly into the value of 6Hq/Hqas shown below. It is convenient to 
represent the sum of the series of the squares of the several density ratios in the coefficient 
of (Sp/p)*  in equation (31) by (Sq)l ,  such that 

i 

With this simplification, equation (31) may be rewritten as 

Finally, recalling from figure 2 that the ratio ( p ,  / p , )  causes the contribution of H, to H, 
in equation (13) to  become negligible when the integration has proceeded downward from 
h, by more than about three scale heights, we recognize that the contribution of SH,/H, 
to 6Hq/Hq in equation (33) must similarly be negligible for hq sufficiently below h, . 
Thus for this condition, equation (33) may be approximated by 

Also, because 6Hq/Hq is identically equal t o  6Tq/Tq, it  is convenient at this point to 
return from scale-height notation to  temperature notation, and equation (34)" is rewritten 
as 

This equation represents the relative uncertainty in T, (the temperature at height hs) as 
deduced from a set of density-height data measured with a constant relative uncertainty 
( 6 p / p )  over the entire range of a height region h, down to h,, where (h, - h,) is equal 
to at least three scale heights. This equation assumes the atmosphere to be isothermal 
at the value T associated with H, a condition which might apply to the earth's atmos­
phere at heights above about 400 km. Because several of the variables included in the 
most general form of the uncertainty expression as given by equation (23) are excluded 
in equation (35), this simpler version is more readily examined for the influence upon 
6Tq/Tq produced by variations in the sampling-height interval Ah alone. 

*At this point and in the balance of the paper the word equation shall be construed to include mathematical statements 
of approximate equalities such as in (34). 

19 



In terms of the relative uncertainty in density, equation ( 3 5 )  for 6Tq/Tq is very similar 
to  equation (20) for 6T/T in terms of the relative uncertainty in pressure, except that Sq 
in equation (35) takes the place of G i n  equation (20). Therein lies a great difference, 
because the quantity Sq is a dimensionless function of three variables, f i ,  Ah, and 
(hl - hq), and has a value which varies between G a n d  zero, as Ah varies from large 
values to zero. For Ah > 5 H, the value of Sq approaches flasymptotically as Ah 
approaches infinity, independent of the value of fi or  (h, - hq). For Ah < 0.2 H, the 
value of Sq decreases nearly linearly with decreasing values of Ah, for any fixed value of 
fi or (hl - hq). 

The influence of variations of both Ah and (h, - hq)  upon S q ,  and implicitly upon 
6Tq/Tq , is seen in figure 6. Here, for a fixed value of E = ( 1 0 / 0  km, a band of values 
of Sq is plotted as a function of Ah on a fully logarithmic scale. Ordinate values of Sq 
are given on the right-hand side of the figure. The upper limit of the band is designated 

'q, max 
and is plotted as a line of long dashes; the lower limit of the band is designated 
and is plotted as a solid line. The range of the values of Sq within the band, at 

sq, 
any particular value of Ah, represents the influence of variations of (h, - h q )  at that 
value of Ah, with the value of Sq increasing as (hl - h q )  decreases. At any particular 
value of Ah, the smallest possible value of (hl - hs )  is, of course, Ah, and hence Sq," 
depicts the locus of the values of Sq associated with the condition that (h, - hq)  = Ah. 
Thus, this upper limit of Sq represents the value of equation (32) when that equation 
involves only the first two density-altitude points of a data set, that is, the value of Sq 
for the case when 6Tq/Tq is being computed for the height hq associated with the 
second-highest density-height data point in the sounding. For this situation, the right-
hand side of equation (32) reduces to  [ f l ( p q  - p ,  ) /pq  ]. As the height for computing 
6Tq/Tq is lowered from h, , such that (hl - h q )  becomes increasingly large, the value of 
Sq slowly decreases and asymptotically approaches a lower limit Sq,minwhen (hl - hq)  
is greater than three scale heights. 

It is convenient t o  define the ratio of Sq,mawto Sq,min as R and to  examine the variation 
of R with respect to  variations in Ah. As long as Ah is smaller than about 0.2 H, R 
retains a nearly constant value (a value which is seen graphically to be approximately 
equal to fl),and the graphs of both Sq,mawand Sq,min versus Ah are seen to make an 
angle of about +45" with respect t o  the abscissa. Because of the feature of a nearly 
constant slope of +I for both Sq,maxand Sq,minin the region where Ah < 0.2 H, this 
region is hereafter designated as the small-increment regime. As Ah exceeds 0.2 H and 
increases toward 5 H, the slopes of both Sq," and Sq,mingradually decrease toward 
zero. However, the slope of Sq," decreases more rapidly than that of Sq,minso that 
S

9," 
approaches Sq,minat a common valuef i ,  while the value of the ratio R decreases 

from fltoward unity. For Ah > 5 H, the value of R is essentially constant at unity, 
and the slope of the line common to  both Sq,maxand Sq,minis essentially zero. The 
feature of an essentially zero slope for this common line representing Sq versus Ah specifies 
a region which, because of the related large value of Ah (Ah > 5 H), is hereafter referred 
to  as the large-increment regime. The region between the small-increment regime and the 1 

large-increment regime, the region for which 0.2 H < Ah'< 5 H, is hereafter referred to as I 
the transition regime. 
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Figure 6. Graphs of three quantities as a function of density-sampling-height interval Ah, that is, ( 1 )  the 
limited band of values of a particular series of terms defined by S , (2) the value of the last term of that

9
series, and (3) the value of the ratio of mean scale height to Ah. 

In the large-increment regime, where Sq," and Sq,mhare essentially identical, it is 
apparent that Sq is essentially independent of (hl - hq). In the small-increment regime, 
the concern for the influence of (hl - h q )  upon Sq remains only for values of (hl - h,) less 
than about 3 H. Because equation (35) is based upon the restriction that (hl - h, ) is greater 
than 3 H, and because S, approaches Sq,minfor such values of (hl - h,) in all three regimes, 
it is immediately apparent that the general factor Sq in equation (35) should be replaced by 
the specific value Sq,min.It is somewhat less apparent that 6 p / p  (the general expression for 
relative uncertainty of density in equation (35)) should be replaced by 6pq/p ,  (the specific 
relative uncertainty for h, ), particularly when equation (35) is applied to  the small-increment 
regime. The reasons for the latter replacement stem from the facts that the following dual 
relationship exists for the dual conditions (hl - h,) > 3 H and Ah < 0.2 H: 

The value of the series S, ,which becomes essentially Sq,mh for (hl - h,) > 3 H, 
simultaneously approaches the value of ( p ,  -pq- l) /pq,the last term in equation (32), 
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0 

defining S,. This near equality between Sq,minand (p, -pq-l) /p,  in the small-
increment regime is demonstrated graphically in figure 6. 

The term (p, - pqe1)/pqis properly associated with the specific uncertainty 
6p,/p, rather than with 6p /p .  This situation is evident from the fact that the 
quantity (p, -pq-l)/p, is a coefficient of Spq/pq in equation (30),which, 
except for an isothermal condition, is a general expression equally applicable to 
both 6Hq/Hq and 6Tq/Tq. Thus, at least for the small-increment regime, equation 
(35) may be rewritten as 

i 

Even in the large-increment regime where the value of Sq,minapproaches [ \ /z(pq - p, -1 ) /pq  3 , 
the value of Sq,minis still dominated by (p ,  - p , - ) /p,  (which is equal to unity in this 
regime); therefore, Sq,minshould still be associated with 6 p q / p , .  

Because ( p  -pq- ) /p ,  approaches unity in the large-increment regime, while Sq,minap­
p r o a c h e s a ,  it is reasonable to write the following special form of equation (36) for that 
regime : 

This equation is seen to be analogous t o  equation (20) involving uncertainties in pressure-
height data. 

In addition to the graphs of Sq,max,Sq,min,and (p ,  - p )/pq versus Ah, figure 6 also 
contains a graph of the function (H/Ah) versus Ah for ( lO/ f l )  km or for T = 241.57 K. 
This function, which obviously varies inversely with Ah, is seen to have a constant negative 
45" slope for a fixed value of H. When this function is multiplied by Sq,min,a quantity 
which according to figure 6 is seen to  have a +45" slope in the small-increment regime, the 
product for the small-increment regime is essentially a constant (independent of Ah) with 
a value near unity for all values of H or T. This situation is depicted in figure 7 where the 
value of the product [Sq,min* ($Ah)] versus Ah is plotted in all three regimes for each of 
three values of E-(7/fl, ( lO/f l ) ,  and (1 3 / G )  km' - consistent with the mean tempera­
tures 169.10, 241.57, and 314.04 K, respectively. Because of the characteristics of this 
product, equation (35) as applied to the small-increment regime may be. replaced by 
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densities) in equation (36) as a function of density-sampling height interval, for each of three values of 
mean scale height consistent with three specified temperatures. 

Thus, three different expressions represent the value of 6Tq/Tq as a function of uncertain­
ty in density-height data: equation ( 3 8 )  in the small-increment regime, equation ( 3 7 )  
in the large-increment regime, and equation (36) in the transition regime. 

As a representative of the three equations noted, the application of the data from figure 7 
to each of nine particular values of uncertainty in density-height data yielded the graph 
shown in figure 8. This figure shows the percent uncertainty in the temperature, derived 
from density-height data through equation (12) ,  as a function of density-sampling height 
interval for a band of normal atmospheric temperatures, 169 to 3 14 K, and for a wide range 
of density-height uncertainty, 0.01 to  100 percent. This figure can serve as the basis for 
estimating the relationship between the uncertainty in each value of a set of density-height 
data to each point of the related temperature-height profile, or vice versa, for the region of 
the earth’s atmosphere below about 120 km. 

The examples of hypothetical use of the pressuredata graph, discussed in the section 
on temperatures deduced from pressures, could be readily transposed to apply to this 
density-data graph. In particular, figure 8 shows that the relative uncertainty in the  
density observations need not be smaller than 1 percent in order to have less than a 1 per­
cent uncertainty in a 245 K temperature for a temperature height profile with a height 
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resolution of 100 meters. This value is 100 times larger than the 0.01 percent uncertainty 
required of pressure data to meet the same conditions and represents a very significant re­
laxation of the measurement requirements. 

The estimates deduced from the use of this graph are theoretically accurate as long as the 
data to which the graph is applied comply with the three restrictions imposed during the 
preceding development. However, it will be seen that one of these restrictions may be 
essentially eliminated, while a second has only a small influence. One may recall that these 
restrictions are: 

0 	 The height hq associated with Tq is more than three scale heights below h, the 
greatest height of the sounding: (h, - hq)> 3 H, 

0 	 The relative uncertainty of the density-height data is constant over the entire 
height range of the sounding, and 

The atmosphere is isothermal over the height range of the sounding. 

The first of these restrictions must be retained unless one has some independent means for 
determining T, or HI and its uncertainty as required by equation (33). Only for (h, - h,) > 
3 H will the ratio p ,  / p ,  be sufficiently small to  permit the associated term to be neglected 
in equations (34) through (38). 

The second restriction is not a very significant one because it has been shown that the 
constant factor ( 6 p / p ) ,  used as the general expression for density uncertainty in equation 
( 3 9 ,  is dominated by the particular value (6pq/ p q )  associated with the density-height data 
at hq. Thus, the need for ( 6 p / p )  to  be constant over the entire height range of a particular 
sounding can be relaxed without significantly affecting the validity of any of equations (36), 
(37), or (38). 

The third restriction appears to  be plulosophically important because the earth’s atmosphere 
below 120 km is certainly not isothermal. Actually, however, the existence of the various 
nonzero gradients in the temperature profile has little effect on 6Tq/Tq. This situation is 
due to  the fact that 6Tq/Tq depends primarily on the conditions between the data points 
( p q - ,,hq- ,  ) and (p ,  ,h,) and hardly at all upon the conditions between other pairs of data 
points. Even a nonzero temperature gradient between the two specified data points has 
only a small effect, and this can be readily accounted for. This is accomplished by reintro­
ducing into equation (36) certain temperature-gradientdependent coefficients which are 
associated with 6pq/pq  in the general version of 6Hq/Hq (or equivalently 6Tq/Tq), as ex­
pressed by equation (23). 

To begin with, (g/Ah) in equation (36) is replaced by its original form R/(Ah + AH) as used 
in equation (23). Then Sq,min,which has been shown to  be almost exactly equal to  [ (p ,  ­
pq-, ) / p q  I for isothermal conditions in the small-increment regime, is replaced by the prod­
uct of this ratio times its associated coefficient ( x~ - , ,~from equation (23). Thus, for an 
atmosphere with varying temperature or scale height, we may rewrite equation (38) for 
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the small-increment regime as 

L - L ’ y \  pq / L \ A h + A  
(39) 

Using the value of as defined by equation (27) and replacing by (2Hq + AH)/2 where 
AH = (Hq-* -Hq),  and remembering that Ah = (hq-l - hq), we have an expression for 
6Tq/Tq in terms of Hq- and pq- at height hq- ,and in terms of Hq ,p, ,and 6pq at height 
h, : 

It is interesting to  examine an example of the use of equation (40) in terms of a realistic 
set of data, applicable to the small-increment regime, as taken from the US.Standard 
Atmosphere, 1962. Choosing the height interval Ah = 1 km’ between hqml= 66 km’ and 
hq = 65 km’, in a region of negative temperature gradient AT/Ah = -4 K/km’, we find p , - ]  
and p,  to be 1.3482 X and 1.5331 X kg m-3 respectively, Hq = 7.0709 km’, and 
AH = -0.1 173 km’. The substitution of these data into equation (40) leads to  a value of 
1.076 for the coefficient of 6pq/pq ,a value involving only a second-order difference from 
the unity coefficient of equation (38); in this case, 6Tq/Tq would be 1.076 times 6pq/pq 
instead of 1.OOO times 6pq/pq  for the isothermal case. Thus the assumption of isothermality, 
both in the development and use of equations (36), (37), and (38), is seen to introduce only a 
second-order error, and accounting for this error is unnecessary in most uncertainty deter­
minations. 

CONCLUSIONS: A COMPARISON OF THE DENSITY-DATA NOMOGRAM WITH THAT 
FOR PRESSURE DATA 

The graph relating 6T/T t o  sampling-height interval of density data for various temperatures 
and density uncertainties depicted in figure 8 is based on the same range of values of tempera­
ture and sampling-height interval used in figure 5 ,  which relates 6T/T to the sampling-height 
interval of pressure data. In addition, the nine assumed values of 6 p / p  in figure 8 are iden­
tical to the nine assumed values of 6 p / p  in figure 5. Thus, the two figures are exactly 
comparable, and the only difference is that figure 8 is for density data while figure 5 is for 
pressure data. A comparison of these two figures shows that, at  least from the point of view 
of height resolution and uncertainty of derived temperatures, density-height data are to be 
preferred over pressure-height data. 

In the large-increment regime, Ah > 5H, figure 8 is essentially identical to that of figure 5. In 
this regime, both figures show that the uncertainty in the derived temperature is decreased 
as the height resolution of the related temperature profile is decreased, that is, as the 
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sampling-height interval is increased. However, even the smallest sampling-height interval 
within this regime is so large (Ah 2 5H or about 30 km'), that the height resolution makes 
this regime essentially useless for temperature-height determinations at heights below 
100 km'. 

In the small-increment regime as well as in the transition regime, figures 5 and 8 are quite 
different from each other. Assuming that (hl - hq)  > 3H, a basic condition for the appli­
cability of figure 8, the uncertainty in temperatures derived from density-height data is seen 

! 	 t o  be independent of both Ah and T in the small-increment regime (Ah <0.2H). In this 
regime, 6Tq/Tq derived from densities is dependent only upon the uncertainty of the den­
sity-height value at height hq . It  is apparent that uncertainty considerations place no limits 
on the usable fineness of the height resolution of the density-height data. This situation is in 
contrast to that associated with pressure-height data where 6T/T is seen in figure 5 to  depend 
upon T and Ah, as well as upon 6p/p, and where 6T/T becomes prohibitively large for 
reasonable values of 6p/p when Ah becomes smaller than about 1 km. 

In the transition regime, figure 8 shows less difference from figure 5 than in the small-incre­
ment regime. In this transition regime, the characteristics of the function determining 
6T/T from density-height data vary between those of the small-increment regime and those 
of the large-increment regime, such that 6T/T decreases slightly as Ah varies from about 0.2fI 
t o  about 5H. In going from the small-increment regime to the transition regime, however, 
the increased coarseness of the height resolution of the related temperature-height profile 
would more than offset the correspondingly small decrease in temperature uncertainty, 
particularly since the minimum values of Ah in this regime are already of the order of 1 km'. 
Even in this regime, however, the density-height data yield smaller values of 6T/T than are 
obtained from pressure-height data. 

In general, a comparison of figure 8 with figure 5 shows that the density-height data are 
far more desirable than pressure-height data at least from the point of view of the size of 
the uncertainty and of the height resolution of the derived temperature-height profile. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland August 1975 
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APPENDIX A 
DEVELOPMENT OF THE GENERAL EXPRESSION FOR 

(6 Tq AND FOR (6 Hq/Hq)2 

It is well known that temperature may be deduced from density-height data by means of the 
following relationship: 

GM 
T = -p1 T, -- llhqp (h) dh 

pq pq 

where 
p(h) is the function relating atmospheric density to geopotential height, 

h, 

h, 

G 

M 

R 

p, 

T, 

p, 

T, 

is the geopotential height of the upper limit of the region of integration in geo­

potential meters (m'), 


is the geopotential height of the lower limit of the region of integration in geopotential 

meters (m'), 


is the geopotential gravity constant 9.80665 m2s ' ~(m')-', 


is the mean molecular weight of the air 28.9644 kg (kmol)-', 


is the universal gas constant 8.3 1432 x lo3  joules kmol-' , 


is the atmospheric density at h, , 

is the atmospheric temperature at h, 


is the atmospheric density at h, , and 


is the sought after atmospheric temperature at h, . 

Because of the defined relationship between temperature and scale height H, H = TR/GM, 
it is convenient to rewrite equation (A-1) as 

where 

H, is the scale height at h, ,and 

Hq is the scale height at hq.  
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Generally, p(h) is not known as an analytical function for which one might find a perfect 
integral, but rather is known as a set of numerical values of density versus geometric or 
geopotential height. Therefore, it  is convenient to replace the integral term in equation 
(A-2) with a series approximation. One possible form of such an approximation is a series 
of terms each of which represents the area of a trapezoid corresponding to  the area under 
that portion of the graph of the natural logarithm of density versus h represented by two 
successive density-altitude points. In such a situation, the sum of these terms represents the 
sum of the areas of all of the successive trapezoids between the specified limits. When the 
successive density-altitude points plotted on a semilogarithmic scale are connected by straight-
line segments, as is frequently the situation for closely spaced density-height data, the series 
of logarithmic trapezoids exactly fits the area under the graph. When using this logarithmic 
trapezoidal approximation, (A-2) may be rewritten as 

- p1 1 (hj.-l -hj"Pj -Pj-l)
Hq 	- - - H l + - * x  Qnp.- Qnp. 

pq 'q j = 2  J J- 1 

The validity of using (A-3) as an approximation of (A-2) for the case of a continuous atmo­
sphere improves as the height increment between successive density-height values decreases. 

The uncertainty in the computed value of H, is based on a function involving the partial 
derivative of Hq with respect to each of the mdependent variables. These include H, and 
the appropriate number of density-height data pairs: h, ,p, ;hj,  pj (for j = 2 to  q - 1 ) ;  as 
well as h, ,p,. With the assumption that the uncertainty in each data pair is entirely in the 
density value, we can assume h+, and hj to have no variability. Consequently we are interested 
in the partial derivatives of H, ,as expressed by equation (A-3), with respect t o  only the 
following variables: H, ,p ,  ,pj  (for j = 2 to q-1) ,and p,. The general member of this set of 
variables is given the general designation yi. The partial derivative aHq/ayi multiplied by the 
corresponding uncerta.inty 6yi for each of the q + 1 variables is discussed below: 

The product of 6H, times the partial derivative of H, with respect to H, issimply 

(A-4) 

The product of 6 p ,  times the partial derivative of H, with respect to p, is 
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It can be shown, however, that 

, 


1 
Qnp2 - Qnp, Ah+AH 

(A-6) 

where the double subscript “1 ,2” on the right-hand member of equation (A-6) indicates 
that Ah = (h, - h, ), AH = (H, - H,), and = (HI + H,)/2. When h, is greater than h, , 
the left-hand side of equation (A-6) is positive, Ah is positive, and AH has the sign of the 
temperature gradient aT/ah in the region h, to  h, . The same equation, with other con­
secutive digits such as 2 , 3 ,  or 3 , 4 ,  and so on, indicates these same relationships for the 
corresponding height intervals. 

Equation (A-6) combined with equation (A-5) yields 

When modified by the introduction of equation (A-6), with each of two different but 
appropriate pairs of subscripted digits, the product of 6p2 times the derivative of Hq with 
respect to  p, becomes 

In this equation the subscript “1, 2” on each of two factors has the same significance as it 
has on these same two factors in equation (A-7), while the subscript “2, 3” on each of two 
other factors signifies that the quantities E, AH, and Ah within each of these factors are 
associated with the geopotential height increment h, to  h, . Thus, for these two factors, 
Ah = h, - h, ,E= (H, + H, )/2, and AH = H, -H, . Equation (A-8) involves the two height 
increments which are separated by the height h, . 
The partial derivative of Hq with respect to each of p3, p4 , . . . ,pq-,, and p q - l ,when 
multiplied by 6pj (where j is successively 3, 4, . . . ,q - 2, and q - 1) and, when further 
modified by the appropriate introduction of equation (A-6), is identical to equation (A-8) 
except for the successive incrementing of the subscripts. Thus, a convenient form of the 
product of t ipq-,  times the particular expression for the partial derivative of Hq with respect 
to P q - ,  is 
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In equation (A-9) the subscript “q - 2, q - 1” on each of two factors signifies that the 
quantities E, AH, and Ah within each of those two factors are associated with the geo-I 

potential-height increment hq-, to hq- l,so that Ah = hq-2- hq- l,H = (Hq-2+ Hq-l)/2,and 
AH = Hq-, - H,-!. Similarly in equation (A-9), the subscript “q-1 ,q”  on each of two 
other factors signifies that the quantities E, AH, and Ah within each of these two factors 
-are associated with the geopotential-height increment hq-l to hq, so that Ah = hq- -hq , 
H = (H, - + H, )/2 ,and AH = H, - -Hq . This expression involves the two height 
increments separated by the height hq-

Because of the common form of the partial derivatives of H, with respect to p, ,p, , . . . , 
p,-, ,and pq-l , it is desirable to  write a general version of equations (A-8) and (A-9) to  
express the product of 6pj times the partial derivative of H, with respect to pj ,where j 
is understood to  have values ranging from 2 to q - 1 .  

This general equation is 

Finally, the product of 6pq times the partial derivative of H, with respect to p, when 
modified by the introduction of equation (A-6), is 
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In this equation the subscript “q - 1,q”  on each of two factors has the same significance 
as in equation (A-9), while the subscript “j - 1,j7’on another factor in the general term sig­
nifies that the quantities H, AH, andAh within that term are associated with the-general 
geopotential height increment hj-l to hj. Thus, for this factor, Ah = hj-l - hj, H = <Hj-, + 

-Hj)/2, and AH = Hj-,Hj. 

It  is evident that one part of this equation deals with the data associated with the single 
height increment Ah = (hq-l - hq)  between the lowest two density-height values involved 
in the calculation of Hq ,while another part of the equation deals with all the height incre­
ments between h, and hq and their associated density data. 

Each of equations (Ad),  (A-7), (A-lo), and (A-1 1) is directly involved in the Gaussian 
expression for relative uncertainty 6Hq/Hq which follows: 

The first, second, and fourth terms within the brackets of this equation are seen to represent 
exactly the squares of equation (A4),  (A-7), and (A-1 l ) ,  respectively. The third term 
represents the square of equation (A-10) evaluated for j ranging from 2 to  q - 1. The 
bracketed portion of the right-hand side of equation (A-12) is seen to  be multiplied by the 
reciprocal of Hq ,thereby implying that each term of equations (A-4), (A-7), (A-lo), and 
(A-11) must ultimately be multiplied by 1/Hq , either before or  after these equations are 
squared and summed to equal (6Hq /Hq )’ . It is convenient in this case to  do the multiplica­
tion before squaring and summing. Equations (A-7), (A-lo), and (A-1 l ) ,  each contain the 
doubly subscripted factor 

in at least one term. It is convenient therefore to accomplish this multiplication operation 
in the appropriate terms by introducing Hq into the denominator of this doubly subscripted 
factor, thereby converting this factor into a nondimensional coefficient with a value close 
to  unity. In order to put the resulting coefficient into proper perspective with respect to 
the remainder of the equation and also to  conserve space in the uncertainty expression 
being developed, it is convenient to  define each of these modified factors by a specific 
symbol. Thus, from equation (A-7) the modified factor is defined as the coefficient a,,’, 
that is, 

(A-13) 
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while the two modified factors involved in equation (A-1 1) are defined as 

(A-14) 

and 

(A-1 5 )  

the modified factor from equation (A-10) is defined as the coefficient cyq- , q ,  that is, 

(A-16) 

Substituting equations (AIF), (A-71, (A-1O), and (A-1 I ) ,  respectively, into the successive 
terms on the right-hand side of equation (A-12), dividing each of these equations by Hq 
(that is, replacing each of the “1 ’s” in the denominators of these equations by Hq ), and 
simultaneously replacing the resulting modified doubly subscripted factors in these equations 
by the equivalent coefficient forms defined in equations (A-13) through (A-16) leads to the 
following expression for (6Hq/Hq l2 : 

Because 6Hq /Hq is identically equal to 6Tq/Tq, equation (A-1 7) may be rewritten as 
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